Frekwensie van die lopende gemiddeld Filter Die frekwensieweergawe van 'n LTI stelsel is die DTFT van die impulsrespons, Die impulsrespons van 'n L - sample bewegende gemiddelde is sedert die bewegende gemiddelde filter is FIR, die frekwensieweergawe verminder om die eindige som Ons kan die baie nuttig identiteit gebruik om die frekwensie reaksie as waar ons toelaat dat AE minus jomega skryf. N 0, en M L minus 1. Ons kan belangstel in die omvang van hierdie funksie word ten einde te bepaal watter frekwensies te kry deur middel van die filter unattenuated en wat verswakte. Hier is 'n plot van die omvang van hierdie funksie lyk, vir L 4 (rooi), 8 (groen) en 16 (blou). Die horisontale as wissel van nul tot pi radiale per monster. Let daarop dat in al drie gevalle, die frekwensieweergawe het 'n laagdeurlaat kenmerk. 'N konstante komponent (nul frekwensie) in die insette gaan deur die filter unattenuated. Sekere hoër frekwensies, soos pi / 2, is heeltemal uitgeskakel word deur die filter. Maar, as die bedoeling was om 'n laagdeurlaatfilter ontwerp, dan het ons nie baie goed gedoen. Sommige van die hoër frekwensies is verswakte net met 'n faktor van ongeveer 1/10 (vir die 16 punt bewegende gemiddelde) of 1/3 (vir die vier punt bewegende gemiddelde). Ons kan baie beter as dit doen. Bogenoemde plot is geskep deur die volgende Matlab kode: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 ) (1-exp (-iomega8)) ./ (1-exp (-iomega)) H16 (1/16) (1-exp (-iomega16)) ./ (1-exp (-iomega)) plot (omega , ABS (H4) ABS (H8) ABS (H16)) as (0, PI, 0, 1) Kopiereg kopie 2000- - Universiteit van Kalifornië, moet BerkeleyI 'n bewegende gemiddelde filter wat 'n afsnyfrekwensie van 7.8 het ontwerp Hz. Ek het gebruik voordat bewegende gemiddelde filters, maar so ver as Im bewus, die enigste parameter wat in gevoer kan word is die aantal punte wat gemiddeld. Hoe kan dit met 'n afsnyfrekwensie Die omgekeerde van 7.8 Hz is 130 ms, en Im werk met data wat getoets by 1000 Hz. Impliseer dit dat ek dit behoort te word met behulp van 'n bewegende gemiddelde filter venster grootte van 130 monsters, of is daar iets anders wat Im hier vermis gevra 18 Julie 13 aan 09:52 Die bewegende gemiddelde filter is die filter gebruik word in die tydgebied te verwyder die geraas bygevoeg en ook vir glad doel, maar as jy dieselfde bewegende gemiddelde filter gebruik in die frekwensiedomein vir frekwensie skeiding dan prestasie sal ergste wees. so in daardie geval gebruik frekwensiedomein filters uitvoering maak user19373 3 Februarie by 05:53 Die bewegende gemiddelde filter (soms omgangstaal bekend as 'n wagon filter) het 'n vierkantige impulsrespons: Of, anders gestel: Onthou dat 'n diskretetyd-stelsels frekwensieweergawe is gelyk aan die diskrete-tyd Fourier-transform van sy impulsrespons, kan ons dit soos volg bereken: Wat was die meeste belangstelling in jou geval is die grootte van die filter, H (omega). Met behulp van 'n paar eenvoudige manipulasies, kan ons kry dat in 'n makliker om te begryp vorm: Dit kan nie makliker om te verstaan kyk. As gevolg van Eulers identiteit. onthou dat: Daarom kan ons skryf die bogenoemde as: Soos ek al voorheen gesê, wat jy regtig bekommerd oor die omvang van die frekwensieweergawe. Dus, kan ons die grootte van die bogenoemde te neem om dit verder te vereenvoudig: Let wel: Ons is in staat om die eksponensiële terme uit te laat val, omdat hulle dit nie invloed op die grootte van die resultaat e 1 vir alle waardes van omega. Sedert xy xy vir enige twee eindige komplekse getalle x en y, kan ons aflei dat die teenwoordigheid van die eksponensiële terme dont raak die algehele omvang reaksie (in plaas daarvan, hulle invloed op die stelsels fase reaksie). Die gevolglike funksie binne die omvang hakies is 'n vorm van 'n Dirichlet kern. Dit is soms 'n periodieke sed funksie, want dit lyk soos die sinc funksie ietwat in voorkoms, maar is periodieke plaas. In elk geval, sedert die definisie van afsnyfrekwensie ietwat is underspecified (-3 dB punt -6 dB punt eerste sidelobe nul), kan jy die bostaande vergelyking gebruik om op te los vir alles wat jy nodig het. Stel H (omega) ter waarde wat ooreenstem met die filter reaksie wat jy wil by die afsnyfrekwensie: spesifiek, kan jy die volgende doen. Stel omega gelyk aan die afsnyfrekwensie. Om 'n deurlopende-time frekwensie om die diskrete-tyd domein karteer, onthou dat omega 2pi frac waar FS is jou monster tempo. Vind die waarde van N wat gee jou die beste ooreenkoms tussen die linker - en regterkante van die vergelyking. Dit moet die lengte van jou bewegende gemiddelde wees. As N is die lengte van die bewegende gemiddelde, dan 'n geskatte afsnyfrekwensie F (geldig vir N GT 2) in genormaliseer frekwensie Ff / fs is: Die omgekeerde hiervan is Hierdie formule is asimptoties korrekte vir groot N, en het ongeveer 2 fout vir N2, en minder as 0,5 vir N4. P. s. Na twee jaar, hier uiteindelik wat die benadering gevolg. Die gevolg is gebaseer op ongeveer dieselfde MA amplitude spektrum rondom f0 as 'n parabool (2 orde Series) volgens MA (Omega) ongeveer 1 (frac - frac) Omega2 wat meer presiese naby die nul kruising van MA (Omega) gemaak kan word - frac deur te vermenigvuldig Omega deur 'n koëffisiënt verkryging MA (Omega) ongeveer 10,907523 (frac - frac) Omega2 die oplossing van MA (Omega) - frac 0 gee die resultate hierbo, waar 2pi F Omega. Al die bogenoemde het betrekking op die -3dB afsny frekwensie, die onderwerp van hierdie post. Soms al is dit interessant om 'n verswakking profiel in stop-orkes wat vergelykbaar is met dié van 'n 1 Om IIR laaglaatfilter verkry (enkele paal LPF) met 'n gegewe -3dB afsny frekwensie (so 'n LPF is ook bekend as lekkende integreerder, 'n paal nie presies by DC, maar naby aan dit). Om die waarheid te beide die MA en die 1ste orde IIR LPF het -20dB / dekade helling in die stop-band ( 'n mens moet 'n groter N as die een wat in die figuur, N32, om dit te sien), maar terwyl MA het spektrale nulls by Fk / n en 'n 1 / f evelope, die IIR filter het slegs 'n 1 / f profiel. As 'n mens wil 'n MA filter met 'n soortgelyke geraas filter vermoëns as hierdie IIR filter verkry, en ooreenstem met die 3dB afgesny frekwensies om dieselfde te wees, op die vergelyking van die twee spektra, sou hy besef dat die stop orkes rimpeleffek van die MA filter beland 3dB laer as dié van die IIR filter. Met die oog op dieselfde stop-orkes rimpeleffek (maw dieselfde geraas krag verswakking) as die IIR kry filtreer die formules kan soos volg gewysig word: ek het terug die Mathematica script waar ek bereken die uitroei vir 'n paar filters, insluitend die MA een. Die gevolg is gebaseer op ongeveer dieselfde MA spektrum rondom f0 as 'n parabool volgens MA (Omega) Sonde (OmegaN / 2) / Sonde (Omega / 2) Omega 2piF MA (F) ongeveer N1 / 6F2 (N-N3) pi2. En die afleiding van die kruising met 1 / sqrt van daar af. â € Massimo 17 Januarie by 2: 08Low-pass filter Dit is in die eerste plek daarop dit sal nie volledig wees in enige sin. Dit bestaan om fragmente van nuttige inligting bevat. Pseudokode Die eksponensieel geweeg bewegende gemiddelde (EWMA) is die naam vir wat is waarskynlik die maklikste digitale, tyd-domein verwesenliking van die (eerste-orde) laagdeurlaat op diskrete data. Dit filter glad met behulp van 'n bewegende plaaslike gemiddelde, wat dit 'n trae navolger van die insetsein maak. Intuïtief, sal dit stadig reageer op die vinnige veranderinge (die hoë-frekwensie-inhoud), terwyl hy nog as gevolg van die algehele neiging van die sein (die lae-frekwensie-inhoud). Dit is geweeg met 'n veranderlike (sien x3b1) in staat wees om sy sensitiwiteit wissel. In aansoeke daardie monster op 'n gereelde interval (bv klank) kan jy betrekking x3b1 om frekwensie inhoud. In sulke gevalle dikwels wil hê jy moet 'n gefilterde uitset reeks te bereken vir 'n inset-reeks, deur herhaling deur middel van 'n lys so iets te doen: of die ekwivalent: Laasgenoemde vorm kan meer intuïtief / insiggewende voel: die verandering in die gefilterde uitset is eweredig aan die bedrag van verandering en geweeg deur die filter sterkte x3b1. Beide kan help kyk hoe die gebruik van die onlangse gefiltreer uitset gee die stelsel traagheid: 'n Kleiner x3b1 (groter 1-x3b1 in die voormalige) (maak ook vir 'n groter RC) beteken die uitset sal meer traag pas, en moet minder geraas wys (sedert die afsnyfrekwensie is laer (verifieer)). 'N Groter x3b1 (kleiner 1-x3b1) (kleiner RC) beteken dat die uitset vinniger (minder traagheid) gevalle sal pas, maar wees meer sensitief vir geraas (sedert die afsnyfrekwensie is hoër (verifieer)) Sedert die berekening is plaaslike, waar jy net die nuutste waarde kan voorkom stoor 'n groot verskeidenheid van die volgende te doen vir elke nuwe monster (dikwels 'n klomp van die tye in 'n ry, om seker te maak ons pas genoeg). In gevalle van nie-so-gereelde monsterneming x3b1 is meer verwant aan spoed van aanpassing as om frekwensie inhoud. Dit is nog steeds relevant, maar die notas op frekwensie inhoud van toepassing minder streng. Jy wil tipies implementeer die skikking / geheue as dryf - selfs as jy SY terugkeer - om probleme wat veroorsaak word deur afrondingsfoute te vermy. Die meeste van die probleem: wanneer alphadifference (self 'n drywende vermenigvuldiging) minder as 1 is, word dit 0 in 'n (truncatng) gooi 'n heelgetal. Byvoorbeeld, wanneer Alpha is 0,01, dan sein verskille kleiner as 100 sal maak vir 'n aanpassing van 0 (via heelgetal afkorting), sodat die filter sal nooit aan te pas by die werklike ADC waarde. EWMA het die woord eksponensiële daarin, want elke nuwe gefiltreer uitset effektief gebruik al die waardes voordat dit, en effektief met eksponensieel verrottende gewigte. Sien die Wikipedia skakels vir meer bespreking. 'N Grafiese voorbeeld: 'n kiekie van arduinoscope - 'n bewegende grafiek, met die nuutste monsters aan die linkerkant. Die rou sein op die top is 'n paar SECONDSs waarde van 'n ADC monsterneming van 'n drywende pen, met 'n vinger raak dit elke nou en dan. Die ander is lowpassed weergawes daarvan, op die verhoging van sterkpunte. Sommige dinge om op te let daaroor: die slowish eksponensiële aanpassing te stap-agtige reaksies (amper soos 'n heffing kapasitor - vinnig aanvanklik, dan stadiger en stadiger) die onderdrukking van enkele groot spykers / afwykings. dat sy beslis moontlik om te hard te filtreer (alhoewel dit reg hang baie af van die monsterneming spoed en die aanpassing / inhoud / frekwensies jou doel behoeftes). in die tweede beeld, die die volle omvang ossillasie kom uit halfpad nie soseer as gevolg van filter, maar ook grootliks omdat die meeste rou monsters om daar versadig aan beide kante van die ADC wissel. Op x3b1, x3c4, en die afsnyfrekwensie Hierdie artikel / artikel is 'n saadjie x2014 waarskynlik 'n hopie van 'n halwe gesorteer notas, is nie goed gekontroleer so kan verkeerde stukkies het. (Voel vry om te ignoreer, op te los, of vir my sê) x3b1 is die smoothing faktor, teoreties tussen 0,0 en 1,0, in die praktyk gewoonlik lt0.2 en dikwels lt0.1 of kleiner, want behalwe dit is jy skaars doen enige filter. In DSP is dit dikwels gebaseer op: x394 t. gereeld geskryf dt. die tyd interval tussen monsters (resiprook van sampling rate) 'n keuse van tydkonstante x3c4 (TLU), ook bekend as RC (laasgenoemde 'n verwysing na 'n resistor-plus-kapasitor stroombaan wat ook nie laagdeurlaat lyk. Spesifiek, RC gee die tyd waarin die kapasitor laai na as jy kies 'n RC naby youll dt kry Alfa's hoër as 0,5, en ook 'n afsnyfrekwensie wat naby die Nyquist frekwensie (gebeur op 0,666 (verifieer)), wat so min dat dit die filter redelik filters uit nutteloos. In die praktyk sal jy dikwels kies 'n RC wat ten minste 'n paar veelvoude van dt, wat beteken dat x3b1 is op die einde van 0,1 of minder. Wanneer die monsterneming gebeur streng gereeld, want dit is vir 'n goeie en baie ander DSP aansoeke, .. die afsnyfrekwensie aka knie frekwensie is goed-gedefinieerde, naamlik: byvoorbeeld, wanneer RC0.002sec, die donker is by op 200Hz, 2000Hz, en 20000Hz monsterneming, dit maak vir Alfa's van 0,7, 0,2, en 0,024 onderskeidelik. (op dieselfde monsterneming spoed: die laer Alpha is, hoe stadiger sal die aanpassing by nuwe waardes en hoe laer die effektiewe afsnyfrekwensie) (kontroleer) vir 'n eerste-orde laagdeurlaat: teen laer frekwensies, die reaksie is byna heeltemal plat, op hierdie frekwensie die reaksie is -3dB (begin daal in 'n sagte draai / knie) by 'n hoër frekwensies dit dit druppels op 6db / oktaaf (20dB / dekade) hoër-orde variasies afval vinniger en het 'n harder knie. Let daar sal ook 'n faseverskuiwing, wat agter bly die insette wees. Dit hang af van die frekwensie dit begin vroeër as die amplitude falloff, en sal wees -45 grade by die knie frekwensie (verifieer). Arduino voorbeeld Hierdie artikel / artikel is 'n saadjie x2014 waarskynlik 'n hopie van 'n halwe gesorteer notas, is nie goed gekontroleer so kan verkeerde stukkies het. (Voel vry om te ignoreer, op te los, of vertel my) Dit is 'n enkel-stuk-of-geheue weergawe, want as jy belangstel om net in die (jongste) produksie waarde. Semi-sortedFrequency Reaksie van bewegende gemiddelde filter en FIR Filtreer Vergelyk die frekwensieweergawe van die bewegende gemiddelde filter met dié van die gereelde FIR filter. Stel die koëffisiënte van die gereelde FIR filter as 'n reeks van afgeskaal 1s. Die skaal faktor is 1 / filterLength. Skep 'n dsp. FIRFilter System voorwerp en stel sy koëffisiënte te 1/40. Om die bewegende gemiddelde bereken, skep 'n dsp. MovingAverage System voorwerp met 'n gly venster met lengte 40 tot die bewegende gemiddelde bereken. Beide filters het dieselfde koëffisiënte. Die insette is Gaussiese wit ruis met 'n gemiddeld van 0 en 'n standaardafwyking van 1. Visualiseer die frekwensieweergawe van beide filters deur die gebruik van fvtool. Die frekwensie response pas presies, wat bewys dat die bewegende gemiddelde filter is 'n spesiale geval van die FIR filter. Ter vergelyking, sien die frekwensieweergawe van die filter sonder geraas. Vergelyk die filters frekwensie reaksie op dié van die ideale filter. Jy kan sien dat die hoof lob in die deurlaatband is nie plat en die rimpels in die stopband is nie beperk. Die bewegende gemiddelde filters frekwensieweergawe kom nie ooreen met die frekwensieweergawe van die ideale filter. Om 'n ideale FIR filter besef, verander die filter koëffisiënte 'n vektor wat nie 'n volgorde van afgeskaal 1s. Die frekwensieweergawe van die filter veranderinge en is geneig om nader aan die ideale filter reaksie beweeg. Ontwerp die filter koëffisiënte gebaseer op voorafbepaalde filter spesifikasies. Byvoorbeeld, ontwerp 'n equiripple FIR filter met 'n genormaliseerde afsnyfrekwensie van 0.1, 'n deurlaatband rimpeleffek van 0,5 en 'n stopband verswakking van 40 dB. Gebruik fdesign. lowpass om die filter spesifikasies en die ontwerp metode om die filter te ontwerp definieer. Die filters reaksie in die deurlaatband is amper plat (soortgelyk aan die ideale reaksie) en die stopband het beperkte equiripples. MATLAB en Simulink is geregistreerde handelsmerke van The MathWorks, Inc. Sien www. mathworks / handelsmerke vir 'n lys van ander handelsmerke in besit van die MathWorks, Inc. Ander produk of handelsmerk name is handelsmerke of geregistreerde handelsmerke van hul onderskeie eienaars. Kies jou CountryAs ander genoem het, moet jy 'n IIR (oneindige impulsrespons) filter eerder as die FIR (eindige impulsrespons) filter jy is nou met behulp oorweeg. Daar is meer as dit, maar met die eerste oogopslag FIR filters word toegepas as eksplisiete konvolusie en IIR filters met vergelykings. Die besondere IIR filter Ek gebruik 'n baie in mikrobeheerders is 'n enkele paal laaglaatfilter. Dit is die digitale ekwivalent van 'n eenvoudige R-C analoog filter. Vir die meeste aansoeke, sal hierdie beter eienskappe as die boks filter wat jy gebruik het. Die meeste gebruike van 'n boks filter wat ek teëgekom het is 'n gevolg van iemand nie aandag in digitale seinverwerking klas, nie as gevolg van die behoefte van hul besondere eienskappe. As jy net wil 'n hoë frekwensies dat jy weet is geraas te verminder, 'n enkele paal laaglaatfilter is beter. Die beste manier om 'n digitaal te implementeer in 'n mikrobeheerder is gewoonlik: filt lt-- filt VF (NEW - filt) filt is 'n stukkie van die aanhoudende staat. Dit is die enigste aanhoudende veranderlike wat jy nodig het om hierdie filter te bereken. NUWE is die nuwe waarde wat die filter word opgedateer met hierdie iterasie. VF is die filter fraksie. wat pas 'n bekommernis vir die filter. Kyk na hierdie algoritme en sien dat vir 0 VF die filter is oneindig swaar sedert die uitset verander nooit. Vir 1 VF, sy werklik geen filter glad sedert die uitset volg net die insette. Nuttige waardes van die twee. Op klein stelsels haal jy VF om 1/2 N wees sodat die vermenigvuldig met VF bereik kan word as 'n reg verskuiwing deur N stukkies. Byvoorbeeld, kan VF wees 16/1 en die vermenigvuldig met VF dus 'n reg verskuiwing van 4 stukkies. Andersins hierdie filter moet net een aftrek en een byvoeging, hoewel die getalle gewoonlik nodig om wyer as die invoerwaarde (meer op numeriese presisie in 'n aparte afdeling hieronder) wees. Ek neem gewoonlik A / D lesings aansienlik vinniger as dit nodig is en pas twee van hierdie filters kaskade. Dit is die digitale ekwivalent van twee R-C filters in reeks, en verswak met 12 dB / oktaaf bokant die rolloff frekwensie. Maar vir A / D lesings sy gewoonlik meer relevant om te kyk na die filter in die tydgebied deur die oorweging van sy stap reaksie. Dit vertel jou hoe vinnig jou stelsel 'n verandering sal sien wanneer die ding is wat jy meet veranderinge. Om die ontwerp van hierdie filters (wat net beteken pluk VF en besluit hoeveel van hulle waterval) te fasiliteer, ek gebruik my program FILTBITS. Jy gee die aantal verskuiwing stukkies vir elke VF in die kaskade reeks filters, en dit bere die stap reaksie en ander waardes. Eintlik het ek gewoonlik loop dit via my wrapper script PLOTFILT. Dit loop FILTBITS, wat 'n CSV-lêer maak, dan plotte die CSV. Byvoorbeeld, hier is die resultaat van PLOTFILT 4 4: Die twee parameters om PLOTFILT beteken daar twee filters kaskade van die hierbo beskryf tipe. Die waardes van 4 dui die aantal verskuiwing stukkies om die vermenigvuldig met VF besef. Die twee VF waardes is dus 1/16 in hierdie geval. Die rooi spoor is die eenheid stap reaksie, en is die belangrikste ding om te kyk na. Byvoorbeeld, hierdie vir jou vertel dat as die insette onmiddellik verander, die opbrengs van die gekombineerde filter sal vestig tot 90 van die nuwe waarde in 60 iterasies. As jy omgee vir 95 wegsterftyd dan moet jy wag sowat 73 iterasies, en vir 50 wegsterftyd slegs 26 iterasies. Die groen spoor wys jou die uitset van 'n enkele volle amplitude piek. Dit gee jou 'n idee van die ewekansige geraas onderdrukking. Dit lyk soos geen enkele voorbeeld meer as 'n 2.5 verandering in die uitset sal veroorsaak. Die blou spoor is 'n subjektiewe gevoel van wat hierdie filter doen met 'n wit geraas te gee. Dit is nie 'n streng toets, want daar is geen waarborg wat presies die inhoud was van die ewekansige getalle opgetel as die wit geraas insette vir hierdie lopie van PLOTFILT. Sy net om jou 'n rowwe gevoel van hoeveel dit sal platgedruk en hoe glad dit is. PLOTFILT, miskien FILTBITS, en baie van die ander nuttige dinge, veral vir PIC firmware ontwikkeling is beskikbaar in die PIC Ontwikkeling tools sagteware vrylating op my bladsy sagteware afgelaai. Bygevoeg oor numeriese presisie Ek sien uit die kommentaar en nou 'n nuwe antwoord dat daar belangstelling in die bespreking van die aantal bisse wat nodig is om hierdie filter te implementeer. Let daarop dat die vermenigvuldig met VF log 2 (VF) sal skep nuwe stukkies onder die binêre punt. Op klein stelsels, is VF gewoonlik gekies om 1/2 N wees sodat dit vermeerder eintlik besef deur 'n regte verskuiwing van N stukkies. Filt is dus gewoonlik 'n vaste punt heelgetal. Let daarop dat hierdie een van die wiskunde nie die geval te verander van die verwerkers oogpunt. Byvoorbeeld, as jy die filter 10 bis A / D lesings en N 4 (1/16 VF), dan moet jy 4 fraksie stukkies onder die 10 bis integriteit A / D lesings. Een meeste verwerkers, youd doen 16 bis integriteit bedrywighede weens die 10 bis A / D lesings. In hierdie geval is, kan jy nog doen presies dieselfde 16 bis integriteit opertions, maar begin met die A / D lesings links verskuif deur 4 stukkies. Die verwerker nie die geval is die verskil en nie die geval is weet moet. Doen die wiskunde op hele 16 bit heelgetalle werk of jy dit as '12.4 vaste punt of ware 16 bit heelgetalle (16.0 vaste punt) wees. In die algemeen, moet jy N stukkies elke filter paal voeg as jy dit nie wil geraas voeg as gevolg van die numeriese verteenwoordiging. In die voorbeeld hierbo, sal die tweede filter van twee moet 1044 18 stukkies inligting nie verloor het. In die praktyk op 'n 8 bit masjien wat youd gebruik 24 bit waardes beteken. Tegnies slegs die tweede paal van twee sou die wyer waarde nodig nie, maar vir firmware eenvoud Ek gebruik gewoonlik dieselfde verteenwoordiging, en sodoende dieselfde kode, vir alle pole van 'n filter. Gewoonlik skryf ek 'n subroutine of makro een filter paal aksie uit te voer, dan aansoek doen dat elke paal. Of 'n subroutine of makro hang af of siklusse of program geheue is belangriker in daardie spesifieke projek. In ieder geval, ek gebruik 'n paar kras staat om nuwe pas in die subroutine / makro wat filt updates, maar ook belastings wat in dieselfde kras staat NUWE in. Dit maak dit maklik om verskeie pale toe te pas, aangesien die opgedateer filt van een pool is die NUWE van die volgende een. Wanneer 'n subroutine, sy nuttig om 'n wyser punt om filt op die manier, wat net ná filt op die pad uit is opgedateer. Op dié manier die subroutine bedryf outomaties op agtereenvolgende filters in die geheue as meer as een keer genoem. Met 'n makro hoef jy nodig het 'n wyser omdat jy slaag in die adres te werk op elke iterasie. Kode Voorbeelde Hier is 'n voorbeeld van 'n makro soos hierbo beskryf vir 'n PIC 18: En hier is 'n soortgelyke makro vir 'n PIC 24 of dsPIC 30 of 33: Beide hierdie voorbeelde is geïmplementeer as makros met behulp van my PIC assembler voorverwerker. wat is meer in staat is as een van die ingeboude makro fasiliteite. clabacchio: Nog 'n probleem wat ek moes genoem is implementering firmware. Jy kan 'n enkele paal laaglaatfilter subroutine keer skryf, dan pas dit meer as een keer. Om die waarheid te gewoonlik skryf ek so 'n subroutine om 'n wyser te neem in die geheue om die filter staat, dan is dit bevorder die wyser sodat dit kan genoem word in die reeks maklik om 'n multi-paal filters te realiseer. â € Olin Lathrop 20 April 12 by 15:03 1. Baie dankie vir jou antwoorde - almal van hulle. Ek het besluit om hierdie IIR Filter gebruik, maar dit Filter is nie gebruik word as 'n Standard laagdeurlaatfilter, want ek moet Counter Waardes gemiddeld en vergelyk kan word om veranderinge in 'n sekere omvang te spoor. aangesien hierdie waardes van baie verskillende dimensies afhangende van Hardware wees Ek wou 'n gemiddelde te neem ten einde in staat te wees om outomaties te reageer op hierdie Hardware spesifieke veranderinge. â € sensslen 21 12 Mei om 12:06 As jy kan lewe met die beperking van 'n bevoegdheid van twee aantal items te Gemiddeld (dws 2,4,8,16,32 ens) dan is die kloof kan maklik en doeltreffend gedoen word op 'n lae prestasie mikro sonder toegewyde verdeel, want dit kan gedoen word as 'n bietjie skuif. Elke skof reg is 'n krag van twee bv: Die OP het gedink hy het twee probleme, verdeel in 'n PIC16 en geheue vir sy ring buffer. Hierdie antwoord dui daarop dat die skeidslyn is nie moeilik. Toegegee dit spreek nie die geheue probleem, maar die SE stelsel kan gedeeltelike antwoorde, en gebruikers kan iets uit elke antwoord neem vir hulself, of selfs wysig en kombineer other39s antwoorde. Aangesien sommige van die ander antwoorde vereis dat 'n kloof werking, hulle is soortgelyk onvolledig omdat hulle nie wys hoe om doeltreffend hierdie op 'n PIC16 bereik. â € Martin 20 April 12 by 13:01 Daar is 'n antwoord vir 'n ware bewegende gemiddelde filter (aka wagon filter) met minder geheue vereistes, as jy verstand downsampling hoef. Die sogenaamde kaskade integreerder-kam filter (CIC). Die idee is dat jy 'n integreerder wat jy verskille oor 'n tydperk, en die sleutel-geheue te bespaar, is dat deur downsampling, dont jy elke waarde van die integreerder stoor. Dit kan toegepas word met behulp van die volgende pseudokode: Jou effektiewe bewegende gemiddelde lengte is decimationFactorstatesize maar jy moet net om statesize monsters te hou. Dit is duidelik dat jy kan 'n beter prestasie kry as jou statesize en decimationFactor magte van 2 is, sodat die afdeling en restant operateurs kry vervang deur skofte en masker-ands. Naskrif: Ek stem saam met Olin dat jy altyd in ag moet neem eenvoudig IIR filters voor 'n bewegende gemiddelde filter. As jy dit nie nodig het die frekwensie-nulls van 'n wagon filter, sal 'n 1-paal of 2-paal laaglaatfilter waarskynlik werk boete. Aan die ander kant, as jy die filter vir die doeleindes van uitkap (neem 'n hoë-monster-koers insette en gemiddeld dit vir gebruik deur 'n lae-koers proses) dan 'n CIC filter kan wees net wat jy soek. (Veral as jy statesize1 kan gebruik en heeltemal te vermy die ringbuffer met net 'n enkele vorige integreerder waarde) Daar is 'n paar in-diepte analise van die wiskunde agter die gebruik van die eerste orde IIR filter wat Olin Lathrop reeds oor beskryf op die Digitale Seinverwerking stapel ruil (sluit baie mooi foto's.) die vergelyking vir hierdie IIR filter is: dit kan toegepas word met behulp van slegs heelgetalle en geen verdeeldheid onder die volgende kode (dalk 'n debugging nodig as ek tik uit die geheue.) hierdie filter by benadering 'n bewegende gemiddelde van die laaste K monsters deur die oprigting van die waarde van alfa tot 1 / K. Doen dit in die voorafgaande kode deur te definieer ing BITS om log2 (K), dit wil sê vir K 16 stel BITS tot 4, vir K 4 stel BITS tot 2, ens (Ill verifieer die kode hier gelys word sodra ek 'n verandering te kry en hierdie antwoord wysig indien nodig.) antwoord 23 Junie 12 aan 04:04 Hier is 'n enkel-paal laaglaatfilter (bewegende gemiddelde, met afsnyfrekwensie CutoffFrequency). Baie eenvoudig, baie vinnig, werk baie goed, en byna geen geheue oorhoofse. Let wel: Alle veranderlikes omvang buite die filter funksie, behalwe die geslaag in newInput Nota: Hierdie is 'n enkele stadium filter. Veelvuldige fases kan saam kaskade die skerpte van die filter te verhoog. As jy meer as een stadium gebruik, sal jy moet DecayFactor pas (soos verwys na die afsny-Frequency) te vergoed. En natuurlik al wat jy nodig het, is die twee lyne oral geplaas, hulle dont hul eie funksie het. Hierdie filter het wel 'n oprit-up tyd voor die bewegende gemiddelde verteenwoordig dié van die insetsein. As jy nodig het om dit oprit-up tyd omseil, kan jy net inisialiseer MovingAverage om die eerste waarde van newInput in plaas van 0, en hoop dat die eerste newInput isnt 'n uitskieter. (CutoffFrequency / SampleRate) het 'n reeks van tussen 0 en 0,5. DecayFactor is nie 'n waarde tussen 0 en 1, gewoonlik naby aan 1. Enkellopend-presisie dryf is goed genoeg vir die meeste dinge, ek verkies net dubbelspel. As jy nodig het om te hou met heelgetalle, kan jy sit DecayFactor en Amplitude Factor in fraksionele heelgetalle, waarin die teller gestoor as die heelgetal, en die deler is 'n heelgetal krag van 2 (sodat jy kan bietjie-verskuiwing na regs as die deler eerder as om te verdeel in die filter lus). Byvoorbeeld, as DecayFactor 0.99, en jy wil om heelgetalle gebruik, jy kan stel DecayFactor 0.99 65536 64881. En dan wanneer jy vermenigvuldig met DecayFactor in jou filter lus, net skuif die gevolg 16. Vir meer inligting oor hierdie, 'n uitstekende boek dis aanlyn, hoofstuk 19 op rekursiewe filters: www. dspguide / ch19.htm PS Vir die bewegende gemiddelde paradigma, 'n ander benadering tot die opstel van DecayFactor en AmplitudeFactor wat meer relevant is vir jou behoeftes kan wees, kan sê wat jy wil die vorige, sowat 6 items saam gemiddeld, doen dit strategies, youd 6 items en deel te voeg met 6, sodat jy kan die AmplitudeFactor stel om 1/6, en DecayFactor om (1.0 - AmplitudeFactor). antwoord 14 Mei 12 aan 22:55 Almal het deeglik kommentaar op die nut van IIR teen FIR, en op krag-van-twee-afdeling. ID net graag 'n paar implementering besonderhede gee. Die onderstaande werk goed op klein mikrobeheerders met geen FPU. Theres geen vermenigvuldiging, en as jy N hou 'n krag van twee, al die afdeling is enkel-siklus bietjie-verskuiwing. Basiese FIR ring buffer: hou 'n lopende buffer van die laaste N waardes, en 'n lopende som van al die waardes in die buffer. Elke keer as 'n nuwe monster kom in, trek die oudste waarde in die buffer van som, vervang dit met die nuwe monster, voeg die nuwe monster te som, en uitset som / N. Gewysig IIR ring buffer: hou 'n lopende totaal van die laaste N waardes. Elke keer as 'n nuwe monster kom in, som - som / N, voeg in die nuwe monster, en uitset som / N. antwoord 28 Augustus 13 aan 13:45 As I39m jy lees reg, you39re beskrywing van 'n eerste-orde IIR filtreer die waarde you39re trek isn39t die oudste waarde wat uitval, maar is in plaas van die gemiddelde van die vorige waardes. Eerste-orde IIR filters kan beslis nuttig wees, maar I39m nie seker wat jy bedoel wanneer jy suggereer dat die uitset is dieselfde vir alle periodiese seine. Op 'n 10kHz sample rate, voer 'n 100Hz vierkante golf in 'n 20-stadium boks filter sal 'n teken dat eenvormig styg vir 20 monsters oplewer, sit hoog vir 30, daal eenvormig vir 20 monsters, en sit laag vir 30. 'n eerste-orde IIR filter. â € supercat 28 Augustus 13 aan 15:31 sal 'n golf wat skerp begin oplewer stygende en geleidelik afplat naby (maar nie by) die maksimum insette, dan skerp begin val en geleidelik afplat naby (maar nie by) die insette minimum. Baie verskillende gedrag. â € supercat 28 Augustus 13 by 15:32 Een probleem is dat 'n eenvoudige bewegende gemiddelde mag of nie mag nuttig wees. Met 'n IIR filter, kan jy 'n lekker filter met relatief min calcs kry. Die FIR jy beskryf kan net gee jou 'n reghoek in die tyd - 'n sed in freq - en jy can39t die kant lobbe te bestuur. Dit kan die moeite werd om te gooi in 'n paar heelgetal vermeerder sodat dit 'n mooi simmetriese verstelbare FIR as jy kan spaar die klok bosluise wees. uitvoering maak Scott Seidman 29 Augustus 13 by 13:50 ScottSeidman: Nie nodig vir vermeerder as 'n mens het net elke stadium van die FIR óf uitset die gemiddelde van die insette op daardie stadium en sy vorige gestoor waarde, en dan slaan die insette (indien 'n mens die numeriese reeks, kan 'n mens die som eerder as die gemiddelde gebruik). Of that39s beter as 'n boks filter hang af van die aansoek (die stap reaksie van 'n boks filter met 'n totale vertraging van 1ms, byvoorbeeld, sal 'n nare d2 het / dt piek wanneer die insette verander, en weer 1ms later, maar sal moet die minimum moontlike d / dt vir 'n filter met 'n totale 1ms vertraging). â € supercat 29 Augustus 13 aan 15:25 Soos mikeselectricstuff gesê, as jy regtig nodig het om jou geheue behoeftes te verminder, en jy dit nie omgee jou impulsrespons om 'n eksponensiële (in plaas van 'n vierkantige pols), sou ek gaan vir 'n eksponensiële bewegende gemiddelde filter . Ek gebruik dit op groot skaal. Met hierdie tipe filter, hoef jy geen buffer nodig het. Jy hoef nie te N afgelope monsters te stoor. Slegs een. So, kry jou geheue vereistes kap met 'n faktor van N. Ook, moenie jy nodig het 'n afdeling vir daardie. Slegs vermenigvuldiging. As jy toegang tot swaai-punt rekenkundige het, gebruik swaai-punt vermenigvuldiging. Anders, doen heelgetal vermenigvuldiging en skuif na regs. Ons is egter in 2012, en ek sal u aanbeveel om opstellers (en MCUs) wat u toelaat om te werk met swaai-punt getalle gebruik. Behalwe dat meer geheue doeltreffend en vinniger (jy hoef nie te items in enige omsendbrief buffer werk), sou ek sê dit is ook meer natuurlike. omdat 'n eksponensiële impulsrespons wedstryde beter soos die natuur optree, in die meeste gevalle. antwoord 20 April 12 aan 09:59 Een probleem met die IIR filter as byna aangeraak deur Olin en supercat maar blykbaar geïgnoreer deur ander is dat die afronding af stel sommige onakkuraatheid (en potensieel vooroordeel / afkorting). veronderstelling dat N is 'n krag van twee, en net heelgetal rekenkunde gebruik word, die verskuiwing reg nie stelselmatig uit te skakel die LSBs van die nuwe monster. Dit beteken dat hoe lank die reeks ooit kon wees, die gemiddelde sal nooit neem diegene in ag neem. Byvoorbeeld, veronderstel 'n stadig afneem reeks (8,8,8. 8,7,7,7. 7,6,6,) en neem die gemiddelde is inderdaad 8 aan die begin. Die vuis 7 monster sal die gemiddelde bring tot 7, ongeag die filter sterkte. Net vir 'n monster. Dieselfde storie vir 6, ens Nou dink aan die teenoorgestelde. die reeks styg. Die gemiddelde sal bly op 7 ewig, totdat die monster is groot genoeg om dit te verander. Natuurlik, kan jy reg vir die vooroordeel deur die byvoeging van 1 / 2N / 2, maar dit sal nie regtig los die akkuraatheid probleem. In daardie geval die dalende reeks sal vir ewig bly, 8 tot en met die monster is 8-1 / 2 (N / 2). Vir N4 byvoorbeeld 'n monster bo nul sal die gemiddelde onveranderd te hou. Ek glo dat 'n oplossing vir dit sou impliseer 'n akkumulator van die verlore LSBs hou. Maar ek didnt maak dit ver genoeg om kode gereed te hê, en ek is nie seker of dit sal nie skade aan die IIR krag in sommige ander gevalle van 'n reeks (byvoorbeeld of 7,9,7,9 sal gemiddeld tot 8 dan). Olin, jou twee-stadium waterval ook sou 'n verduideliking nodig. Bedoel jy hou twee gemiddelde waardes met die uitslag van die eerste gevoer in die tweede plek in elke iterasie. Wat is die voordeel van hierdie
No comments:
Post a Comment